При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1,4 ± 0,2) Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Единицей периода обращения в СИ является:

1) 1 Πa

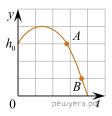
2) 1 кг

3) 1 M

4) 1 Дж

5) 1 c

2. В таблице представлено изменение с течением времени координаты лыжника, движущегося с постоянным ускорением вдоль оси Ох.


| Момент времени <i>t</i> , с | 0 | 1 | 2  | 3 | 4 | 5 |
|-----------------------------|---|---|----|---|---|---|
| Координата $x$ , м          | 3 | 0 | -1 | 0 | 3 | 8 |

Проекция ускорения  $a_r$  лыжника на ось Ox равна:

1)  $1 \text{ m/c}^2$  2)  $2 \text{ m/c}^2$  3)  $3 \text{ m/c}^2$  4)  $4 \text{ m/c}^2$ 

5) 5  $M/c^2$ 

3. На рисунке представлен график зависимости координаты у тела, брошенного вертикально вверх с высоты  $h_0$ , от времени t. Укажите правильное соотношение для модулей скоростей тела в точках A и B.

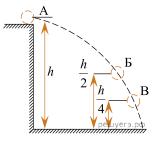


1) 
$$v_B = 9v_A$$
 2)  $v_B = 3\sqrt{3}v_A$  3)  $v_B = 3v_A$   
5)  $v_B = \sqrt{2}v_A$ 

4)  $v_B = \sqrt{3}v_A$ 

**4.** Деревянный шар ( $\rho_1 = 4.0 \cdot 10^2 \ \kappa \text{г/m}^3$ ) всплывает в воде ( $\rho_2 = 1.0 \cdot 10^3$ кг/м $^3$ ) с постоянной скоростью. Отношение  $rac{F_{
m c}}{F_{
m r}}$  модулей силы сопротивления воды и силы тяжести, действующих на шар, равно:

1) 1,0

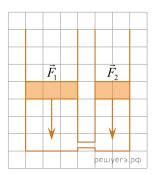

2) 1,5

3) 2,8

4) 3,5

5) 4,0

5. С некоторой высоты h в горизонтальном направлении бросили камень, траектория полёта которого показана штриховой линией (см. рис). Если в точке В полная механическая энергия камня W = 20 Дж, то в точке E она равна:




1) 0 Дж 2) 20 Дж 3) 30 Дж

4) 40 Дж

5) 60 Дж

6. Два соединенных между собой вертикальных цилиндра заполнены несжимаемой жидкостью и закрыты невесомыми поршнями, которые могут перемещаться без трения. К поршням приложены силы  $\vec{F}_1$  и  $\vec{F}_2$ , направления которых указаны на рисунке. Если модуль силы  $F_1 = 18$  H, то для удержания системы в равновесии модуль силы  $F_2$  должен быть равен:



- 1) 8 H
  - 2) 12 H
- 3) 18 H
- 4) 27 H
- 5) 40 H

7. В герметично закрытом сосуде находится идеальный газ, давление которого  $p = 1,0\cdot 10^5$  Па. Если средняя квадратичная скорость поступательного движения молекул газа  $< v_{\rm KB}> = 500$  м/с,то плотность  $\rho$  газа равна:

- 1) 0,40 кг/м<sup>3</sup>

- 2)  $0.60 \text{ ke/m}^3$  3)  $0.75 \text{ ke/m}^3$  4)  $0.83 \text{ ke/m}^3$  5)  $1.2 \text{ ke/m}^3$

8. Если при изотермическом расширении идеального газа, количество вещества которого постоянно, давление газа уменьшилось на  $|\Delta p| = 240 \ \kappa \Pi a$ , а объем

газа увеличился в k = 3,00 раз, то начальное давление  $p_1$  газа было равно:

- 1) 300 кПа
- 2) 320 кПа 3) 360 кПа 5) 400 κΠa
- 4) 380 κΠa

9. С идеальным газом, количество вещества которого постоянно, проводят изотермический процесс. Если объём газа увеличивается, то:

- 1) к газу подводят теплоту, давление газа увеличивается
- 2) к газу подводят теплоту, давление газа уменьшается

3) теплота не подводится к газу и не отводится от него, давление газа увеличивается


4) теплота не подводится к газу и не отводится от него, давление газа уменьшается

- 5) теплота отводится от газа, давление газа уменьшается
- 10. На рисунке приведено условное обозначение:



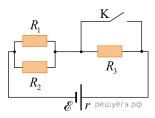
- 1) колебательного контура
- 2) конденсатора
- 3) гальванического элемента 5) резистора
  - 4) катушки индуктивности

11. Диаметр велосипедного колеса d = 66 см, число зубьев ведущей звездочки  $N_1 = 32$ , ведомой —  $N_2 = 21$  (см. рис.). Чтобы ехать с постоянной скоростью, модуль которой V = 18 км/ч, велосипедист должен равномерно крутить педали с частотой v равной ... об/мин.

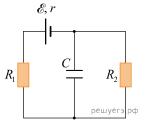


12. На горизонтальном полу лифта, двигающегося с направленным вниз ускорением, стоит чемодан массой  $m = 30 \ \mathrm{kr}$ , площадь основания которого  $S = 0,080 \text{ м}^2$ . Если давление, оказываемое чемоданом на пол,  $p = 2,4 \text{ к}\Pi \text{a}$ , то модуль ускорения а лифта равен ...  $\frac{\mathcal{A}^{\mathrm{M}}}{\mathrm{c}^2}$ 

13. На гидроэлектростанции с высоты h = 65 м ежесекундно падает m =200 т воды. Если полезная мощность электростанции  $P_{\rm noneзh} = 82~{\rm MBm}$ , то коэффициент полезного действия  $\eta$  электростанции равен ... %.

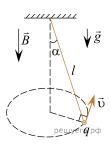

14. На невесомой нерастяжимой нити длиной l=72 см висит небольшой шар массой M=43,6 г. Пуля массой m=2,4 г, летящая горизонтально со скоростью  $\vec{v}_0$ , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости  $v_0$  пули, равном ...м/с.

15. Зависимость координаты х пружинного маятника, совершающего колебания вдоль горизонтальной оси Ox, от времени t имеет вид  $x(t) = A\sin(\omega t + \varphi_0)$ , где  $\omega = \frac{17\pi}{18}~{\rm pag/c}$ ,  $\varphi_0 = \frac{2\pi}{9}~{\rm pag}$ . Если в момент времени t=1,0 с потенциальная энергия пружины  $E_{\rm II}=9$ ,0 мДж, то полная механическая энергия E маятника равна ... мДж.

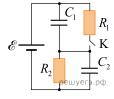

16. Внутри электрочайника, электрическая мощность которого P=800 Вт, а теплоёмкость пренебрежимо мала, находится горячая вода  $c=4200~\frac{\text{Дж}}{\text{K}\Gamma \cdot ^{\circ}\text{C}}$  массой m=800 г. Во включённом в сеть электрическом чайнике вода нагрелась от температуры  $t_1=90.0~^{\circ}\text{C}$  до температуры  $t_2=95.0~^{\circ}\text{C}$  за время  $\tau_1=30~^{\circ}\text{C}$ . Если затем электрочайник отключить от сети, то вода в нём охладится до начальной температуры  $t_1$  за время  $\tau_2$ , равное ... с. Примечание. Мощность тепловых потерь электрочайника считать постоянной.

17. В тепловом двигателе рабочим телом является одноатомный идеальный газ, количество вещества которого постоянно. Газ совершил цикл, состоящий из двух изохор и двух изобар. При этом максимальное давление газа было в четыре раза больше минимального, а максимальный объём газа в n=2,5 раза больше минимального. Коэффициент полезного действия  $\eta$  цикла равен ... %.

18. На рисунке представлена схема электрической цепи, состоящей из источника тока, ключа и трех резисторов, сопротивления которых  $R_1=R_2=8,00$  Ом,  $R_3=4,00$  Ом. По цепи в течение промежутка времени t=25,0 с проходит электрический ток. Если ЭДС источника тока  $\varepsilon=18,0$  В, а его внутреннее сопротивление r=2,00 Ом, то полезная работа  $A_{nonesh}$  тока на внешнем участке цепи при замкнутом ключе K равна ... Дж.




19. Электрическая цепь состоит из источника постоянного тока с ЭДС  $\varepsilon=70~B$ , конденсатора ёмкостью  $C=7.0~\mathrm{mk}\Phi$  и двух резисторов, сопротивления которых  $R_1=R_2=60~\mathrm{Om}$  (см. рис.). Если заряд конденсатора  $q=210~\mathrm{mk}$ Кл, то внутреннее сопротивление источника r равно ... Ом.




**20.** Две частицы массами  $m_1=m_2=1,00\cdot 10^{-12}~{\rm Kr},$  заряды которых  $q_1=q_2=1,00\cdot 10^{-10}~{\rm Kr},$  движутся в вакууме в однородном магнитном поле, индукция В которого перпендикулярна их скоростям. Расстояние  $l=200~{\rm cm}$  между частицами остаётся постоянным. Модули скоростей частиц  $v_1=v_2=15,0~\frac{{\rm M}}{c},$  а их направления противоположны в любой момент времени. Если пренебречь влиянием магнитного поля, создаваемого частицами, то модуль магнитной индукции В поля равен ... мТл.

21. В вакууме в однородном магнитном поле, линии индукции которого вертикальны, а модуль индукции B=6,0 Тл, на невесомой нерастяжимой непроводящей нити равномерно вращается небольшой шарик, заряд которого q=0,30 мкКл (см. рис.). Модуль линейной скорости движения шарика v=31 см/с масса шарика m=30 мг. Если синус угла отклонения нити от вертикали  $\sin\alpha=0,10$ , то чему равна длина l нити равна? Ответ приведите в сантиметрах.

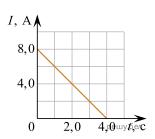


**22.** В электрической цепи, схема которой представлена на рисунке, ёмкости конденсаторов  $C_1=400~\rm Mk\Phi$ ,  $C_2=300~\rm Mk\Phi$ , ЭДС источника тока  $\mathscr E=30~\rm B$ . Сопротивление резистора  $R_2$  в два раза больше сопротивления резистора  $R_1$ , то есть  $R_2=2R_1$ . В начальный момент времени ключ K замкнут и через резисторы протекает постоянный ток. Если внутреннее сопротивление источника тока пренебрежимо мало, то после размыка-



ния ключа K в резисторе  $R_2$  выделится количество теплоты  $Q_2$ , равное ... м $\mathcal{A}$ ж.

**23.** На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны  $\lambda_1=546$  нм дифракционный максимум четвертого порядка ( $m_1=4$ ) наблюдается под углом  $\theta$ , то максимум пятого порядка ( $m_2=5$ ) под таким же углом  $\theta$  будет наблюдаться для излучения с длиной волны  $\lambda_2$ , равной? Ответ приведите в нанометрах.


**24.** Два одинаковых положительных точечных заряда расположены в вакууме в двух вершинах равностороннего треугольника. Если потенциал электростатического поля в третьей вершине  $\varphi=30$  В, то модуль силы F электростатического взаимодействия между зарядами равен ...  $\mu$ H.

**25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 A, C=-0,50  $\frac{\mathrm{A}}{\mathrm{c}}$ . В момент времени  $t_1=10$  с тепловая мощность P, выделяемая в резисторе, равна ... Вт.

**26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС  $\mathcal{E}=13$  В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени  $\Delta t=9,0$  с, равна ... Дж.

27. Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту  $\alpha=30^\circ$  с постоянной скоростью  $\vec{v}$ . Сила сопротивления движению электроскутера прямо пропорциональна его скорости:  $\vec{F}_c=-\beta\vec{v}$ , где  $\beta=1,25$   $\frac{H\cdot c}{_{\rm M}}$ . Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя  $\eta=85\%$ , то модуль скорости v движения электроскутера равен ...  $\frac{M}{c}$ .

**28.** На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7.0 Гн от времени t. ЭДС  $\mathcal{E}_c$  самоиндукции, возникающая в этой катушке, равна ... B.



**29.** Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мк $\Phi$  и катушки индуктивностью L=1,03 Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени  $\Delta t$ , равный ... мс.



**30.** Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом  $\alpha$ , а продолжение преломлённого луча пересекает эту ось под углом  $\beta$ . Если отношется  $\beta$ .

ние  $\frac{tg\,\beta}{tg\,\alpha}=\frac{5}{2},$  то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.